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Language reveals a lot about people
Although social media are widely studied, computational linguistics typically focuses
on prediction tasks:

• sentiment analysis
• authorship attribution
• personality prediction

. . .

Language analysis in social media can also be used to gain psychological insight.

This work . . .
. . . explores language features in Facebook as a function of gender, age, and personality.

• 74,941 volunteers shared their gender and age, and took a personality questionnaire
• 14.3m Facebook status updates resulting in 452m instances of language features

(each volunteer had written at least 1000 words across their status updates)
• find language features most predictive of outcomes
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correlations via multivariate linear regression allow for controls with other variables (i.e.
correlations with gender, adjusted for age).

Personality
The well-accepted “Big Five” model (McCrae and John 1992):

• extraversion: active, assertive, energetic, enthusiastic, outgoing
• agreeableness: appreciative, forgiving, generous, kind
• conscientiousness: efficient, organized, planful, reliable
• neuroticism: anxious, self-pittying, tense, touchy, unstable
• openness: artistic, curious, imaginative, insightful, original

biopsychosocial characteristics that uniquely define a person (Friedman 2007).

Features
n-grams. 1 to 3 token sequences

• emoticon-aware tokenization
• stored as relative frequency
• collocation filter: pmi(ngram) = log p(ngram)

Πtoken∈ngramp(token)

topics. semantically-related words derived via LDA

• Latent Dirichlet Allocation (LDA); MALLET implementation (McCallum 2002)
• Adjusted hyper-parameters to favor fewer topics per document
• 2000 topics (tried 100, 500, 2000, 5000)
• usage per person: p(topic, person) =

∑
tok∈topic

p(topic|tok) ∗ p(tok|person)

Results

N-grams most distinguishing females (top) and males (bottom), adjusted for age. N-grams and topics most distinguishing volunteers aged 13 to 18 and 23 to 29.
(N = 74, 941: 46, 572 females and 28, 369 males; Bonferroni-corrected p < 0.001). (N = 74, 941; correlations adjusted for gender; Bonferroni-corrected p < 0.001)
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N-grams most distinguishing extraversion from introversion and neuroticism from emotional stability
(N = 72, 791 for extraversion; N = 72, 047 for neuroticism; adjusted for age and gender; Bonferroni-corrected p < 0.001).
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Standardized frequency of topics and words across age. A. The best topic for each of the
4 age groups. B. Select social topics. C. ‘I’ and ‘we’ unigrams.

Conclusions
• A case-study on analyzing language in social media for psychological insight:

– some results were known or obvious:

∗ extraverts mention ‘party’
∗ neuroticism and ‘depressed’

– other revealed psychological insight:

∗ emotionally stable individuals mention more sports and life activities
∗ older individuals mention more social topics and less anti-social topics
∗ men preface ‘wife’ or ‘girlfriend’ with the possessive ‘my’ more often

than woman do for ‘husband’ or ‘boyfriend’

• More sophisticated language analyses could be brought to bear.

– features based on entity recognition or semantic relations
– analyses which capture interactions between variables


